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We establish a unified way for the calculation of the critical exponents, without the use
of epsilon expansion, through the improvement of the perturbative effective potential of
the 1+1 dimensional (§¢4 — J¢) scalar field theory. First, we obtain the perturbation
series for the effective potential up to g>. We improved the perturbative effective
potential by establishing a parameter-free resummation algorithm, originally due to
Kleinert, Thoms and Janke, which has the privilege of using the strong coupling as well
as the large coupling behaviors rather than the conventional resummation techniques
which use only the large order behavior. Accordingly, although the perturbation series
available is up to g3 order, we found a complete agreement between our resummed
effective potential and the well known features from constructive field theory. We prove
that the 1-PI correlation functions and the effective potential ought to have the same
large order as well as strong coupling behaviors. We computed the critical exponents
and our results show a good agreement with the exact Ising model values.

KEY WORDS: effective potential; critical phenomena; exponents; Borel resumma-
tion.

PACS: 11.30.Qc, 11.15.Tk, 68.35.Rh

1. INTRODUCTION

The usual recipe of the calculation of the critical exponents is to obtain
different amplitudes, perturbatively, and then apply a resummation technique to
obtain reliable results. This way, although of it’s success, is time consuming as one
has to calculate different types of Feynman diagrams. Another route is to use the
equation of state or a master formula that can produce all the amplitudes through
mathematical operations. This route saves the effort as one needs to calculate the
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Feynman diagrams for only one amplitude. The master formula we mean is the
vacuum energy which plays the role of the generating functional for all the n-point
functions (1pl correlation functions) (Peskin and Schroeder, 1995).

To go through, we mention some other successful attempts (time consum-
ing) to study the critical phenomena in quantum field theories. Pablo J. Marrero
et al. (1999) used the Monte Carlo simulation of the diffusion equation in the
spherical wave expansion and found a good agreement with the universality class
predictions (Zinn-Justin, 1993) for the order of the phase transition and the critical
exponents. Also, in a series of articles Le Guilliou et al. (Brezin et al., 1980; Le
Guillou and Zinn-Justin, 1980; Zinn-Justin, 1993) performed a Borel resumma-
tion of the perturbation series for the renormalization group functions. Their first
results, obtained by the perturbative expansion up to the order g* as a starting
point, did not give critical exponents close to those prescribed by Ising model.
Subsequently, Le Guilliou et al. presented the results of the Borel summation of
e-expansion series for the renormalization group functions obtained in Kazakov

et al. (1979) with a homographic transformation of the form & = *=. The result
3

was further improved by applying a conformal transformation

- G
£6 = (1), M

where the Borel resummation was performed for the series £(G) instead of E(G)
(Zinn-Justin, 1993) and G is the dimensionless coupling constant. Using these
modifications, Le Guilliou et al. were able to obtain 8 =0.12, y = 1.73 and
v =0.99 in a good agreement with two-dimensional Ising model (B = §,y = 1
andv = 1).

While such results themselves are extremely interesting, useful and can be
rather immediately tested, one may be also interested in having a more unified
description of the model’s behavior including the regions away from the critical
region. We stress that the calculations using e-expansion include the calculations
of many amplitudes with many different types of Feynman diagrams. Also, the
conventional Borel algorithm used in Brezin ef al. (1980); Le Guillou and Zinn-
Justin (1980); Zinn-Justin (1993) has some unfixed parameters while it is possible,
as we will see in this work, to fix all the parameters by employing all the known
asymptotic behaviors of the resummed series.

The more coherent description including the region away from the criti-
cal point may be provided by an effective potential. Detailed knowledge of an
effective potential may also offer physically clear insight about the properties
of field-theoretic model and the detailed dynamics of symmetry rearrangement
during the phase transition. Moreover, the use of the effective potential saves the
effort of calculations in a sense that we need only to calculate one kind of Feynman
diagrams, namely, the vacuum diagrams. In this work, we intend to carry out cal-
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culations of the critical exponents from the effective potential for (§T¢4 —JP)i41
theory using perturbative expansion supplemented by a Borel resummation. We
attempt to offer a coherent description of the model by computing perturbative
effective potential away from the critical region in the Symmetric (S) phase for
small coupling G (the coupling G is to be defined later) and in the Broken Sym-
metry (BS) phase for large coupling G. We then attempt to approach the critical
region. This will enable us, in principle, to extract all the critical quantities from
only one master formula.

To shed light on previous tries for the study of the critical phenomena in the
regime of the effective potential, we assert that the Gaussian Effective Potential
(GEP) (Stevenson, 1985) and the Hartree Approximation (HA) (Chang and Wright,
1975; Chang and Yan, 1975), Chang’s method (Chang, 1976; Magruder, 1976),
the Oscillator Representation method (Dineykhan et al., 1995; Efimov, 1989) and
the perturbative effective potential shared the similar errors regarding the order
of the phase transition in %d)f 1 scalar field theory. Among these approaches,
the direct calculation of the effective potential stands out due to it’s capability
to employ other non-perturbative tools like Borel resummation. However, the
conventional Borel algorithms needs a relatively high order in perturbation series
while, up to the best of our knowledge, the available series for the effective potential
for the (§¢>4 — J¢)141 theory is up to two loops (Cea and Tedesco, 1994) (for J =
0 only). As a part of this work, we will obtain the series up to g order in order to
have richer input information to make the Borel resummation results more reliable.

Unlike the other variational techniques like GEP, the effective potential can
attain perturbative corrections in a systematic way. Still, as indicated above, the
effective potential of (§¢>4 — J¢)141 theory yields the first-order phase transition
inconsistent both with the universality argument and the constructive field theory
(Simon, 1974; Simon and Griffiths, 1973) due to persistence of the phase transition
under the small external perturbations. Nonetheless, by taking the first order
effective potential for the ground state energy of (§¢4 — J¢)141field theory as a
starting point, one may hope to improve it in the near-critical region by accounting
explicitly for higher order perturbative corrections. Since the effective coupling
goes like %, these corrections are small both for small as well as large G. However,
at the critical region, the corrections are very large and thus a non-perturbative
tool should follow the perturbation calculations to get reliable results concerning
the critical phenomena.

In this work, we employ the Borel resummation as a non-perturbative tool
to approach the critical region. As mentioned above, the Borel resummation is
indispensable for the better description of the critical region where the effective
interaction in both phases is not weak. Thus, we will offer a description of the
original model in terms of an effective potential which we think is reliable for all
values of the dimensionless coupling. We will show that the second order phase
transition is obtained in such treatment for (§¢>4 — J¢)141 in agreement with the
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universality arguments. Also, we will show that all the n-point functions as well
as the effective potential have the same Borel parameters. The most interesting
result in this work is the calculation of the critical exponents from the effective
potential itself. A note to be mentioned is that the Borel algorithm we use here
uses one more piece of information than the algorithm used in Zinn-Justin (1993),
namely, the strong coupling behavior of the series to be summed. Accordingly, the
algorithm we use is free of parameters as well as resulting in reliable calculations
with a relatively low order in perturbation series.

The paper is organized as follows. In Section 2, we briefly review the first
order effective potential using normal ordering. In Section 3, we obtain the pertur-
bation series for the effective potential up to g3. In this section, also, we summarize
the key points of the Borel-Summation with Kleinert algorithm. We discuss the
results in Section 4. Conclusion follows in Section 5.

2. THE NORMAL ORDERED EFFECTIVE POTENTIAL

In low dimensional super-renormalizable theories, it is often enough to work
with normal ordering to render the quantum field theory finite. This is because
there are only few diagrams that are divergent and these are regulated by nor-
mal ordering. The (§¢4 — J@)14+1 theory is such an example that has only one
divergent diagram in the self-energy amplitude. In that case, one shall start with a
Hamiltonian that is normal ordered with respect to the vacuum of mass parameter
m;

H =N, (%((qu)2 + 72 + m2p?) + %qb“ = J¢> : )

where 7 is the conjugate momentum of the field ¢. We can use the relation
(Coleman, 1975)

1
N exp(iBp) = eXP(—EﬂzA) Ny— ji.m eXpiB @), 3

to rewrite the Hamiltonian normal ordered with respect to a new mass parameter
M = /t -m.InEq. (3), expanding both sides and equating the coefficients of the
same power in f yields the result

Nn¢ = Nu¢,
N.¢* = Ny¢® + A,
Nu¢*> = Nu¢® +3ANy¢, 4)

Nypo* = Ny¢* + 6ANy¢* + 342,
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with
A= —i Int. (&)
47
Also, it is easy to obtain the result (Dineykhan et al., 1995)

1 A 1 2, 1o Lo — w2
Nm<§(v¢)+§7T>—NM<2(V¢)+277)+871(M m?).  (6)

Then we apply the canonical transformation (Dineykhan et al., 1995)

(¢, m) = (¥ + B, II). @)

The field ¥ has mass M = J/t -m , B is a constant, the field condensate and IT
is the conjugate momentum (). Therefore, the Hamiltonian in Eq. (2) can be
written in the form;

H=Hy+H +H +E, 8)
where
5 [P 2 1 2 2 2
Hy = Ny 5(1'[ + (AY)) +§NM(m +3g(B~+ A)yr),

H = %NM(W‘ L ABYS — T,

H, can be found as
H, = Ny(m* + g(B*> + 3A)By), )

and the field independent terms can be regrouped as

1 12gA g 1 3gA? 1
E=—(m*+ == )B>+2B*+ —(M* —m»H+=— 4+ —m>A —JB.
2<m+ 4 ) B gy MmO T g
. (10
Taking b*> = 4w B? and the dimensionless parameters t = %, G=3zandK =

47 #, the corresponding vacuum energy density can be written as

2
G
E(b,t,G) = ’;— <—Kb~|—b2~|— Z(b4—6bzlnt+3ln2t)~|—t —1—1Int
T

Y

The renormalization conditions are given by (Peskin and Schroeder, 1995)

n

ob"

ED.t,G) = gn, (12)
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Fig. 1. The non-cactus
Feynman diagrams due to
the interaction Hamiltonian

S(* +4By3) up to g*
order.

where g, is the ¢/" coupling. For instance,

OE ’E 5
—_— —J’ _— = M N (13)
0B B2
where gy = —J and g, = M? = m_2 +3g(B? + A). Note that, the renormaliza-
tion condition 2£ = — J enforces H; to be zero.

The normdaf ordered effective potential of %(;54 — J¢ theory (Eq. (11)) pos-
sesses some remarkable features, such as manifest duality between symmetric ¢*
theory with large coupling g and broken symmetry ¢* theory with small coupling
G as well as very close value of the critical coupling G, = 1.625 (Dineykhan
et al., 1995) to that obtained from the lattice calculation (Loinaz and Willy, 1998).
Besides, for K = 0, it agrees with GEP results (Stevenson, 1985) which in turn
accounts not only for the leading order diagrams but also for all the cactus di-
agrams (Chang, 1975; Lu and Kim, 2000). In fact, the variational procedure
used in GEP calculations is equivalent to the normal ordered effective potential
with renormalization conditions. To show this, consider the effective potential in
Eq. (11) (for K = 0). In Stevenson (1985), the effective potential is minimized
through:

OE 3,

W_l—z—i—zG(b —Int)=0 (14)
oF b1+ 1G(b2 3In7) ) =0 (15)
[ — _ n =

b 2 ’

which are exactly the equations obtained from the renormalization conditions
((% = 0) = the mass renormalization condition (B;Tf = 2t)).3 Thus, the varia-
tional procedure in the GEP is equivalent to the normal ordered effective potential
with the renormalization conditions. Accordingly, to go to higher orders in case

of K = 0, we include only non-cactus diagrams (Fig. 1).

31In fact E here = 8:;—25
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In spite of all of the above correct features, the normal ordered effective
potential in Eq. (11) describes a first order phase transition in contradiction with
universality results. In order to improve the representation of the effective potential
near the critical region, we consider the modification of Eq. (11) resulting from the
higher order perturbative corrections to the vacuum energy followed by a Borel
summation. In this work, we accounted for perturbative corrections up to G3
order.

3. PERTURBATIONS AND BOREL RESUMMATION OF THE
EFFECTIVE POTENTIAL

In the quasi-particle effective theory we have the interaction Hamiltonian in
the form

% (v + 4By — Ty). (16)

Accordingly, we have the Feynman diagrams shown in Figs. 1 and 2. The diagrams
in Fig. 1 are calculated in Shalaby et al. (2005) and we give here the key points of
the calculation procedure.

For a general ¢>4 Hamiltonian,

1 M?
H= E(B(,o)2 + 7902 +ap + he’ + %(/)4, 17

the vacuum energy diagrams that contribute to O(G 2yand O(G?) orders are shown
in Figs. 1 and 2. These contributions are calculated using perturbation theory. For
each of the Feynman diagrams, convergent integrals of the form

M = c/dkl din | ] m I1 y,(s(z(j)k;) (18)

i
O - = O -
Fig. 2. The Feynman diagrams due to the presence of the external magnetic

field. Here, the small square refers to the vertex —J. Note that we did not plot
the tree level diagram but include it in the calculations.
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were transformed to dimensionless variables k; — mz; and reduced to a form
1 0
M=C /dz ...dz, _— 8( z,-). 19
o () o

Here, C includes necessary (2m)¢ as well as factors of combinatorics and
ij(Z(f k) represent relevant vertices of the diagrams in Figs. 1 and 2 along
with appropriate couplings. Also, f is an overall factor including y;’s and a power
of m obtained after the transformation to dimensionless variables. The integral
was computed numerically using Monte Carlo method when a straightforward
integration was not possible.

Following this procedure, the perturbative corrections to the vacuum energy
density are given by

2 2 2 2 3

a h g h°g g
SE = ——— —0.04452— — 0.00318>~ + 0.01998 —> + 0.0006507 >~ + . ..
2M2 M? e ms T M4 Jzzo)

In terms of the parameters G, b and ¢, the contribution of the diagrams Figs. 1
and 2 to the first order prediction of the effective potential in Eq. (11) yields the
result

8T E(t, b, G) s 1, 3., 3,
T=l—ll’lt+b—l+G Zb +Zln [—Eb lnt
3.155 b? 4.057 b?
+G*[-=—=-3515— | +G® +9.918— (1)
t t 12 12
N —Kb+ 368 Inr — 1 & 3515267 Kb+ 36K (nn)b

—2G*E (I’ 1) b - 5G*E (nn)b

Applying the normalization condition in Eq. (13) one get

1
—K=2—K+G <§(2tb3 —6t(Int)b+ 3Klnt))

b 3.5152K +225K Int(1 + Int
+G2<—7.03—— + > n( +n)>
t t
X b
+ G (19.836 ). (22)

and

7.03 19.836
2t=2+G(3b2—3lnt)+G2<—T>+G3< = ) (23)
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Up to the best of our knowledge, the effective potential of the (§T¢4 —JP)i41
model has never been calculated up to this order in perturbation series. While this
may be viewed as an improvement over the original first order result, we note that
with G corrections the effective potential reproduces a first order phase transition.
One can find that in this approximation one obtains a first order transition near
G, (http:/lwww.lib.ncsu.edultheses/available/etd-08122004-160155/). Thus, the
result obtained in Cea and Tedesco (1994) (they found a second order phase
transition) is fortuitous and changes when the effective potential is computed
up to G corrections. It may be natural to anticipate that perturbative potential
computed for instance in G* order may again give rise to a different kind of
phase transition. Thus, computing perturbative corrections alone does not lead
to a meaningful improvement in the description of the critical region. A non-
perturbative tool needs to be employed here as we discuss in this work. For further
analysis, we attempt to improve perturbative series given by Eq. (21) with the Borel
resummation performed by following the algorithm originally due to Kleinert et al.
(1996).
In the series for the effective potential given by

E(G) = Z‘ Z,G*, (24)
k

we assume that the large order behavior of the series is known to be

k S _k Vi V2
Zi > (=D} kKo (yo+?+ﬁ+-~->,ask—>oo, (25)

where 8, o, v, y1 - . . are some constants. Also, we assume that the strong coupling
behavior of E(G) is known to be

E(G) = ¢,G%, as G — o0, (26)

where « is a constant. Following Kleinert, Thoms and Janke, we rewrite the series
given by Eq. (24) in terms of functions /,(G) given by

1,(G) = /Oodteftt”H;(Gt), 27
0

where H;, are constrained in such a way that /,(G) satisfies both conditions in
Egs. (25) and (26) automatically. Here, c = § + % Then, E(G) can be written as

EG) = _a,l,(G). (28)

p=0
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According to Kleinert, Thoms and Janke, it is convenient to choose the basis
functions /,(G) in the following form (Kleinert et al., 1996)

AN A4 w)ywt! 4w
I == . tw
p(G) (aG) fo C(c+ 1)1 —w)*t eXp( (1—w)zaG>dw’
(29)

so that the expansion coefficients are given by

2”: <4)k<p+k—1—2a) 30)
c—i—l)k p—k '

k=0

This provides a Borel resumed form of the original series given by Eq. (24).
According to Eq. (21), the coefficients Z; in our case are given by

1 K? 5
Z()It—lnt—zT—Kb+b —1,

7 1b4+312t 3b21 t+3K(l l)b+3K21 t
= — —1n - X n 5~ Un 1 72 i,
=3 4 2 2t 4 2
3.155 b? 9K
Zy =~ ~3515— ~3.5152 b———(lz) @D

9K 9K
— Z—Z(ln t)b — Zt—z(ln[)b,

4. 057 b2

3=

The parameters o, « and ¢ are argued in Shalaby et al. (2005); http://lwww.lib.
nesu.edultheses/availableletd-08122004-160155/). However, we will obtain the
true value of the parameter ¢ for the first time later in this work. In fact, the
parameter o is obtained in Reference Zinn-Justin (1993) (¢ = 0.238659217). For
the parameter «, it is obtained from the strong coupling behavior which accord-
ing to duality it takes the value 1. After performing the Borel resummation for
effective potential and taking into account ¢ = 1, we find from Eqs. (29) and (30)
that

4 c+1 1 (l_'_w)wce_(l,:ﬁ
8T EWb, G)/m? = I,=(— d
T E®. G)/m Xp:“” <0G> /0 “Tlet DT — wpes

Z 4
X | Zo+w| —2Zy + Ty \ =
I'(c+1) 4
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5 Z, [(4\°
+w | Zo+ w3 pu
T(c+1)
. Zo (4N Zz (4
+ w 2 T(c+3) ; + m g , (32)
T(c+1) F(c+D)

where Z, = Z,(t, b) is given by Eq. (32) and dependence on the quasi-particle
mass parameter ¢ should be eventually removed using the mass renormalization
condition.

The renormalization conditions can now be applied to the resummed effective
energy as

n

E(t,b,G)=g,. 33
Yo ( )=2g (33)
This gives
M2
K=Y al1, ZW:af)I‘” (34)
p
where
a’ =2b - K, (35)
1
(1) 1 3
= -2 —Q@2tb” —6t(Int)b+3K Int) | ————, 36
a; ao+<2t( (Int)b + n)>a(c+1) (36)
b 3.5152K+2.25K Int\/ 4\> 1
(1) 1
= —7.03—— ) — (37
“ “0+< : = )(a) et 7
2 3 b
RU (i) 2a) N (i) 19.836% ’ 38)
o) (c+1(c+2) o) (c+1D(c+2)(c+3)
and
a? =2, (39)
2) 2 2
=-2 36> —3Int)——, 40
a, ay + ( n)a(cH) (40)
7.03\ [/ 4\ 1
2) 2
= — () — 41
@ “°+< ‘ )(o) Ct Dt )

2 2 3 19.836
a® = <i> 2 <i> C .42
3 o) (c+Dc+2 \o) (c+D(c+2)(c+3)
Now, assume that one resums the perturbative series for the renormalized cou-
pling directly (Eq. (22) and Eq. (23). It is easy to realize that we get exactly the
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renormalized coupling obtained from the effective potential (Eq. (34)) provided
that the parameters in the Borel summation are the same for both the effective
potential and the n-point functions. This may be considered as a consistency re-
quirement: the renormalized couplings should be the same either we summed the
effective potential and then obtain the renormalized coupling through the general
definition of the renormalization conditions or obtain the perturbative renormal-
ized coupling and then resum. According to this consistency, the effective potential
as well as the n-point functions have the same large order behavior and strong
coupling behavior.

Parameter c is the only parameter left unconstrained in our procedure. We
will show that it have the same value as that for the y function. For that, consider
the physical mass given by (perturbatively)

9’E G* G?
= W|b=0—9.918t—2—3.5157—1.5Glnt+1.0. (43)

The y function is defined by (Collins, 1984; Dineykhan et al., 1995)

m2

t dm? t G ) 2
v (—t—3(19.836G —3.515Gt + 1.5t )) . (44)

By resumming the series in the numerator and in the denominator, we get

y = —# > aPren, (45)
”
where
WY () () e
with
SF#, Sz=3'f215t, 3=%. 1)

The parameters o and by — % are the strong coupling and the large order parameters
of the y function. Here, duality predicts « to be 1 and by is known to be 4.5 (Zinn-
Justin, 1993).

If we try to obtain the y function directly from the resummed effective
potential (Eq. 32) we will have the same results provided that by = c. Accordingly,
we get the large order behavior of the effective potential from the known large
order behavior of the y function and as a consequence, we have a resummed
formula for the effective potential which is free of parameters.
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4. NUMERICAL RESULTS

As described above, Eq. (32) provides an expression that interpolates the
effective potential between perturbative result given by Eq. (21) for G small and
large. It also provides description of the effective potential in the critical region
where perturbative expansion neither in S- nor BS-phase is good. We thus used
Eq. (32) to study the behavior of effective potential in the critical region. We used
a self-consistency condition

’E(B,M,g)
9 B2 -

where D(k) is the Feynman propagator, to fix quasi-particle mass ¢ in Eq. (32).
To test our results, we plot the effective potential versus the vacuum con-
densate for K = 0 and for different G values (Fig. 3). We realize that the Borel
resummed effective potential corrected the false result concerning the order of
phase transition predicted by both the normal ordered result and the perturbative
(up to G?) result in Eq. (11) and Eq. (21), respectively. To go further toward more
confidence about how successful is the resummed effective potential in Eq. (32),
we plotted the effective potential for different values of the parameter K and for
values of the G coupling close to the critical coupling G, (Fig. 4). Here, we can
see that the condensate is a positive and monotonic increasing function of K as
predicted by constructive field theory. To make this point more clearer, the plot in

iD~(0) = M?, (48)

,,,,, Perturbative, G=G_c, K=0.
---- Borel summed, G=G_c

64 - Perturbative, G>G_c._K=0.
------ Borel summed, G>G_c, K=0.

4

24

8nE/m’

-2

0.0 0.5 1.0 1.5 2.0 25 3.0

Fig. 3. The effective potential up to G> before and after Borel resummation
near the critical coupling.
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ffffff Borel Summed K=0.
---- Borel Summed K=0.5.
4 4 - Borel Summed K=1.

8nE/m’

Fig. 4. The effective potential after Borel resummation near the critical
coupling for different K values.

Fig. 5 is generated. The plot shows that » — 0 as K — 01 as well as showing
that b is a positive monotonic function of K (not shown in the figure that the mass
gap also agrees with features of the constructive field theory results). The final test
we present here is to check the symmetry breaking in the presence of the external
field K. Our knowledge about magnetic systems tells us that the symmetry is
always broken in the presence of even a small external field. To check this for our
calculations, we plotted the effective potential versus the condensate for different
K values but this time for G < G, (Fig. 6). Rather than the perturbative result,
the symmetry is always broken (no phase transition).

For the critical exponents, consider the graph in Fig. 7. The exponent v, can
be extracted from the critical behavior of Ea — £~¢ (Kaku, 1993), where £ is
the correlation length (inverse of mass gap) and d is the space-time dimension.
Since & « |K|™™ at the critical isotherm (Pelissetto and Vicari, 2002), we get
the result v, = 0.58 which is very close to the value found in the Ising model
(ve = 0.53333).

The exponent v (Kaku, 1993) can be extracted from critical behavior of
E ~ (G — G (see Fig. 8), where d is the space-time dimension. This gives
v = 1 which coincides with the value found in the Ising model. For the exponent
y we note that the perturbative result is

—t G
y=— (—7(19. 836G — 3.515Gt + 1.5:2)) , (49)
m -
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1.0
0.8
0.6
0.4

024

o4

Fig. 5. The vacuum condensate b as a function of K at the critical isotherm.

which gives the mean field result y = 1. The Borel resummed result is given by

4 —1.5 4\* 3.515
() () e
s toc+1 to) (c+1)(c+?2)

m? ; i)2 2(3.515) (i>3 —19.836
+4 (ta ctne+2 o) cxneresd

2

’

(50
where m~ = a(;TE| »=0- Using the resummed effective potential in Eq. (32) we get

the result

SR G e & LTA W PO * 3,515 1)
m-= —_ _ —_ e —
0 ! o c+1 2 g) tc+1(c+2)

4\* 2(-3.515) 4\’ 9.918
+L\|\ ) it ) = . (52)
o) tc+1)(c+2) o) t?(c+1)(c+2)(c+3)
Our estimate for the exponent y gives the result y = 1.667 compared to the
exact Ising result y = 1.75.
According to the above results we feel that the algorithm we established is
very successful in predicting all the known qualitative results from constructive

field theory for the (%d)“ — J¢)141 field theory. For the quantitative predictions
(exponents), we obtain good results compared with the exact Ising results. In fact,
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Fig. 6. The effective potential after Borel resummation at G = 0.5 for K = 0.0, 0.1, 0.3, 0.5.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Fig. 7. The effective potential after Borel resummation at the critical
isotherm G = G, as a function of K.
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Fig. 8. The vacuum energy density (Borel resumed effective potential at its
minimum) as function of coupling G for K = 0.

this is the first time to get such good results with the input perturbative series
up to g order for the (4¢* — J¢)14 field theory. Accordingly, we guess that
more refinement for the critical exponents can be obtained if we add one or two
more terms to the perturbation series. However, such investigation will require
substantial amount of time. It naturally becomes a topic of our future work to
improve the current results.

5. CONCLUSION

In this paper we obtained a formula for the effective potential for ¢* scalar
field theory in 1 4 1 dimensions that is applicable to all values of the coupling
constant G. This formula is obtained by establishing a parameter-free Borel re-
summation of the perturbative effective potential and accounting for the strong
coupling regime via duality related solutions. Our formula effectively interpolates
between the two perturbative series valid, one for small G and the other for large
G, in duality related representation. It is also applicable in the critical region while
perturbative expansions in both original and duality related representations are not
valid there.

To carry out Borel resummation, we calculated perturbatively the effective
potential for d)‘]‘ 41 scalar field theory up to the order of G starting from the duality-
related solutions. In Cea and Tedesco (1994), second order phase transition was
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observed with perturbative expansion up to the order G2. However, up to the order
G?, we found that the perturbation series yields first order phase transition. This
indicates that the result of Cea and Tedesco (1994) is fortuitous.

We improved our perturbative result by using the Borel resummation follow-
ing algorithm suggested by Kleinert et al. (1996). This improvement resulted in the
correct order of the phase transition as well as the agreement with the constructive
field theory predictions.

We were able to obtain the large order behavior of the effective potential by
obtaining the y function in two different ways and enforce the parameters in the
two formulae to match.

For the critical exponents we get a very close results compared to the exact
Ising values although the input perturbative series we obtained is the shortest
one ever been used for Borel resummation. Accordingly, we guess that more
refinement for the critical exponents can be obtained if we add one or two more
terms to the perturbation series.
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